Online Action Recognition Based on Boosted Sequential Classification
نویسندگان
چکیده
منابع مشابه
A Single Framework for Action Recognition Based on Boosted Randomized Trees
Human detection and action recognition form the basis for understanding human behaviors. Human detection is used to detect the positions of humans, and action recognition is able to recognize the action of specific humans. However, numerous approaches have been used to handle action recognition and human detection separately. Therefore, three main issues still exist when independent methods of ...
متن کاملRobust Video-Based Barcode Recognition via Online Sequential Filtering
We consider the visual barcode recognition problem in a noisy video data setup. Unlike most existing single-frame recognizers that require considerable user effort to acquire clean, motionless and blur-free barcode signals, we eliminate such extra human efforts by proposing a robust video-based barcode recognition algorithm. We deal with a sequence of noisy blurred barcode image frames by posin...
متن کاملBoosted multi-class semi-supervised learning for human action recognition
Human action recognition is a challenging task due to significant intra-class variations, occlusion, and background clutter. Most of the existing work use the action models based on statistic learning algorithms for classification. To achieve good performance on recognition, a large amount of the labeled samples are therefore required to train the sophisticated action models. However, collectin...
متن کاملSequential Deep Learning for Human Action Recognition
We propose in this paper a fully automated deep model, which learns to classify human actions without using any prior knowledge. The first step of our scheme, based on the extension of Convolutional Neural Networks to 3D, automatically learns spatio-temporal features. A Recurrent Neural Network is then trained to classify each sequence considering the temporal evolution of the learned features ...
متن کاملOnline Action Recognition via Nonparametric Incremental Learning
We introduce an online action recognition system that can be combined with any set of frame-by-frame feature descriptors. Our system covers the frame feature space with classifiers whose distribution adapts to the hardness of locally approximating the Bayes optimal classifier. An efficient nearest neighbour search is used to find and combine the local classifiers that are closest to the frames ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Robotics Society of Japan
سال: 2007
ISSN: 0289-1824,1884-7145
DOI: 10.7210/jrsj.25.906